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A B S T R A C T  

The class E~ is defined to c~msist of mer~morphic univalent functions H 
omitting a disc with the radius b : H ( z ) = z + ' C . A , . z  ", z >1 ,  H(b) > 
b E(0,  1). By aid of FitzGerald inequalities the inverse coefficients of odd 
Eh-functions are maximized. The result extends the corresponding estimation, 
due to Nctanyahu and Schober, from b = t) to the whole interval (11, 1). 

1. Introduction 

In what follows we shall consider certain classes of holomorphic and univalent 

functions defined either in the unit disc D ={z : l z l <  1} or in the domain 
/) = {z :[z I> 1}. First we shall define the classes in question. 

S is the class of functions F holomorphic-univalent in D having the 

normalized expansion 

F (z )=  z + ~ a,z°. 
n = 2  

S(b) is the class of functions f which are holomorphic-univalent in D and 

bounded by 1, I f (z)[< 1, with the expansion 

f(z)= b( z + ~ a,z"). 
n = 2  

Next, introduce the class Y-,b of functions H, holomorphic-univalent in /9 

except at the point of infinity where they have a pole. Let the functions H be 
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restricted so that 

[ /4(z)l> b, 0 < b < l ,  

and let them have the expansion 

(1) H(z)= z + ~ A°z +°. 
n = [ I  

As a limit case b ~ 0  we obtain from ~b the class 2 of holomorphic-univalent 

functions H in /9 with the expansion (1) and the restriction H(z)~ O. 
Clearly, there is a one-to-one correspondence between the bounded classes ~b 

and S(b): 

f(z)H(1/z)=b, I z l < l .  

In [2] Goluzin rederives Grunsky's inequality for S-functions by applying a 

special summation technique in connection with L6wner's equation of the first 
kind. FitzGerald [1] has extended Goluzin's method by "exponentiating" certain 

functionals in S. This allowed h~m to obtain sharp results for some coefficient 
problems for which the Grunsky inequality is not strong enough. By his method 

FitzGerald has estimated among others the coefficients of the inverse functions 
of S. 

In [3] Launonen applied FitzGerald's ideas for lhe exponentiation of function- 
als in the class S(b). He applied the method first for the coefficients of functions 
which are inverse to odd S(b)-functions. By aid of the inequalities found he 
estimated also the coefficients of functions which are inverse to any S(b)- 
functions. Launonen replaced the original summation formalism by a more 
convenient integral formalism. This considerably shortened the calculations, 
allowing also determination of the uniqueness of the extremal functions. 

In this paper, Launonen's inequality will be applied to finding sharp in- 

equalities for the coefficients of functions inverse to odd Eb-functions. These 

estimates, unfortunately, do not imply sharp inequalities to inverse coefficients 

of any E~-function. Launonen's inequality yields results only for a very limited 
amount of them. 

Schober considers in [5] the class E' C E with the additional normalization 
A,, = 0 and maximizes odd coefficients of functions inverse to E'-functions. In [4] 

Netanyahu succeeded in estimating all the coefficients inverse to E-functions 
through an ingenious use of variational method. 

Let us finally mention that Singh considers in [6] some coefficient problems in 
the class ]~,C~b in which Ao=O. 
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2. The FitzGerald-type condition for Eh-functions 

In [3] Launonen proved that for every function f(z) of S(h) the inequality 

)f(~')f(T/)(~ - ,/) d~ d I f., f,,, V,(()V,(~I (vlb(f(()_f(Ti)) ¢ ~1[ 
(2) 

L --1-f(?)fO1)d?d~ =< v , ( ? ) v , ( n )  ] _  ~.~ 

holds, where ~'t is a closed analytic curve and V~(z) is a continuous weight 
function on y~. 

The connection between the classes S(b) and s'h allows writing the inequality 
(2) in the form 

i / , . ;  - ] . i n  
f,, f,, V'(?)V'(rl)H(l/?) H(I/rl) d?drl 

f, ~, --1-b2/H(l /()H(| /r l)  d(d'FI. -< , , v , ( ? ) v , ( n )  1 - ? ~  

Applying the inversion ?=]/z, r / = l / w  and setting y j (~r " )= '~(z)  and 
sr-2V,(s r ~)= V(z) we get for any function H ( z ) ~  

(3) 
~ - -1-b2/H(z)H(w 

<= V(z)V(ca) 1 - 1/zff2 ) dzd& 

Here ~ is any closed analytic curve and V is a continuous weight function. 

Let now z = l(w) denote the function inverse to the H(z)-funct ion and let us 

denote V(l(w)). l'(w) = / , ( w )  and ~,(I(w)) = y(w).  From (3) we have 

(4) f~ f~ tz(w)l~(s)I(w)-l(S)dwds < f~ f~ /~(w)/~(S)l '-b2/ws____dwd§ " 
w - s - I / I ( w ) I ( s )  

We shall prove that (4) is the sharp inequality in the class of functions inverse to 

~b-functions and that the extremal function is the function z = Io(w ) satisfying 

the equation 

(5) Mw)+L,(w) ~ = b e w  ~ + w .  

For this purpose, let us assume that the function w = F (z )  = z + 2~_2 a.z" is the 
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right radial-slit mapping satisfying the equation 

( 6 )  P ( z )  _ z 
(1 +/~F(z)) 2 ( l + z )  2" Izl <1" 

and the function 

z = ~ ( w ) =  w + ~ C.w" 
n=2 

is the inverse to ff'(z). From [8] (p. 29) we have 

- -n - I  C . = y . , + y .  l b + y o 2 b 2 + ' " + y . ~ o  lib , 

_ _  ( 2 n  - v - 1 ) !  

[ ( n  - v ) r ]  2 ' 

(7) 

2 n - v  
(8) y.v = ( -  l)Vv! n - v + 1 

In view of (6) the function 

(9) 

which is inverse to 

(10) 

satisfies the equation 

n•l 0 2 n + l z = G, , (w)= w + B~.+~w 
= 

w = F,,(z)= X/P(z2). 

0 < / 9 <  1. 

n = l . 2  . . . . .  

v =0.1  .. . . .  n - l .  

(11) G,,(w)(l  + b2w 2) = w(1 + G~(w)).  b = f~,/2. 

and from (10) we have 

(12) G,(w) 2= G(w2). 

From (10) and (6) it follows moreover that the function 

H.( z  ) = 1/F,,(1/z ) 

belonging to the class ~b and mapping [ z [ > l  onto I w l > b  

symmetric slits along the real axis satisfies the equation 

H,,(z )(1 + z 2) = z (Ho(z  )2 + b 2). 

The function inverse to H , ( z )  is 

n~O O -(2n+l} I,,(w) = w + D2.+,w 
= 

given by (5). 

minus two 
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Next. derive the coefficients D'~,,+, of the function L,(w). Represent ing  both 

sides of equat ion (11) as power  series in a ne ighborhood  of the point w = 0, 

compar ing  the terms and by using (12), we obtain 

=Be,.+~ b Be,..I. n = , . . . . . .  (13) Co " + -~ " 1 9 

From (13). (7) and from the fact that /~ = b ~ it follows that 
n 

B2.+. = .kb- , n = 1,2 . . . . .  
= )  

(14) 

where 

/3,.~ = y.k -/3~°_~k-,j, k = 1,2 . . . . .  n - 1, 

/3n , ,  = - -  f l ( n  l ) { n - I ) .  

Applying induction and using (8) it follows that 

2 2 n - k  ( 2 n -  k - l ) !  (15) 13°~=(-~)k~-!2(n_~+l)[(n_k!)!]:, n=l ,2  

Note moreover that from (5) we obtain 

(16) Io(w) = b'-w ~ + w +  ~/1 + ( 2 b ' - - 4 ) w - 2 +  b~w ~4 
2 2 w  -~ 

Analogous ly  from (11 )we  have 

G o ( w )  = 

whence in view of (9) 

b 2 w + w  X/I + (2b 2 - 4)w 2 + b4w ~ 

2 2w 

(17) _ ~ / l + ( 2 b 2 - 4 ) w 2 + b 4 w 4 _  1 b 2 - 2  

2 w  2 w  2 

By aid of (17) and (16) we obtain correspondingly  

I . ( w )  w + ( b  2 1)w ' ~--- - -  --  B 2 n + I  
r l = l  

Thus 

{ D'~ = - ( 1  - b2), 

D~.+, - B~.+,, 

k = l . 2  . . . . .  n. 

(18) 

,•.•l B ° W 2"÷~ - -  W + 2, ,+1  • 
= 

( 2 n + l )  

n = l , 2  . . . . .  
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where B~.+, is given by (14) and (15). Proceeding analogously we can prove that 

I ~ '~  0 - ( 2 n + l )  
- -  W + Za B2.+IW (19) l,,(w) .=, 

Let us put now in (4) 

t ~ ( w )  = w ° 

where n is any fixed positive integer. From (5) and the fact that all the 

coefficients of l,,(w) are real it follows that 

I~ f~ t~(w)Iz(s) I"(w)- I°(S)dwds 
W--S  

I, I- 1 -  b2/w6 . . _  
= • /z(w)/x(~)l  _ -1~o(--~o(~) awa°" 

£, ~., 1 - b2/w6 " 
= - / x ( w ) p , ( o - )  1 _ 1/l,,(w)to(cr-----~) dwd#" 

Thus we have shown 

THEOREM 1. For every [unction z = I (w)  inverse to the £b-[unction, 0 <  b < 

1, the inequality 

holds, where y is any closed analytic curve and t~ is an analytic weight [unction. 
An extremal [unction is the [unction given by (5). 

By passing to the limit with b o O  in the theorem we obtain an analogous 

theorem in the class ~. 

3. The sharp bounds for the coefficients of functions inverse to odd Eb- 

functions 

We shall now apply Theorem 1 to estimate the coefficients of any odd function 

(21) 

We prove that 

l ( w ) =  w + ~o D2~+,w-~2~+l~.= 
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For this purpose,  let us put in (20) the weight f u n c t i o n / z ( w )  = w k ', k any fixed 

natural number .  Then  the left-hand side of the considered inequali ty equals 

41r:l D2k-~ I- In o rder  to derive the r ight-hand side let us put t = w g  and notice 

that the effective term yelding the value of the r ight-hand side of (20) is the 

coefficient of the power  t " of the deve lopment  of the function 

(22) 

[ 1  - b2(wg) -'] 1 - 1 
1 / I ( w ) I ( s )  

= (I - b e t  - ' )  [1 + ( I ( w ) I ( s ) ) - '  + ( I ( w ) ( I ( s ) )  2 + . . "  ] 

(Observe that all the o ther  terms of this deve lopment  yield the zero contr ibut ion 

in the integrat ion of (20).) The  coefficient of t-" can be de te rmined  from Table  1, 

where  

1 ' ~ 19/ (2n+l) - -  W + 2,t+J W . (23) I ( w )  ,=.  

It follows from (21) and (23) that 

a 2 . + I  = - ( D l o t 2 . - l + D 3 a 2 . - 3 +  ' ' '  + D~,-i),  n = 1,2 . . . . .  

F rom Table  1 it follows moreove r  that positive and negative terms in the 

coefficient of t -k of the funct ion (22) are matched  to yield a polynomial  of ak and 

& with only positive terms. Thus,  for  example  in the coefficient of t - 7 ,  there  is 

the term 

2 a ~ +  - a~l 2 1 ( 2 a s + ~ , ) +  ~ t~512 bZl2~s+ 

TABLE 1 

n - I  - 2  - 3  - 4  - 5  - 6  - 7  

( I ( w ) l ( s ) )  ' = 

( l ( w ) l ( s ) )  2= 

( l ( w ) l ( s ) )  3 = 

(I(~t~)l(s)) 4 = 

(i(w),~_~s)) ~ = 

(;(~)i(s)) ~ = 

( t (w)~( s ) )  ~ = 

t-'  + 1~3l=t - '  + I ~ D  -5 + ['~TD ' 

t 2 +12a,12t ~ +12ots+a][_, t 6 

t-3 + I3~D -~ + [3c~ + 3~,q~t -' 

t-' + 14,~['~t " 

t 6 
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and the last two terms in the coefficient of t -k equal to 

[(k - 2) ~ - (k - 3)2b~11 a~ [-~ + 1 - b ~'. 

Thus the inequality (20) can be represented in the form 

47r2[D2k ,[<= f~ f~ t k ~T( t )dwd§,  (24) 

where t = wg, and 

Isr. J. M a t h .  

and because 

(26) 

The dots in the { }-expression indicate a sum of the above type determined by 

the coefficients Ot2k-3, a2k-5 . . . . .  Or3 with only nonnegative terms. 

The condition (24) for k = 1 yields 

(25) [ D , [ _ - < I - b 2 = - D  o" 

This inequality is found also (using the connection between S ( b )  and ~b) as a 

consequence of the Power inequality [7]. This implies also that the only extremal 

function is the function Io (w)  given by (5) and its rotations. 

Taking next k = 2 in (24), we have 

[ D 3 I < I - b 2 = - D  °, 

but in this case the question of the uniqueness of the extremal function remains 

open. 

For k = 3 the inequality (24) takes the form 

[Ds[_-<la312+l-b  2, 

< o b 2 [o,3[ = [ O , l =  l O , [  = 1 _  __ , o, 

where a ° denotes the k-th coefficient of the development of Io (w)  -1, then 

(27) iDs l<(aO3):+ l _ b 2  o,~o ,-,o o 
~ - -  0 ¢ 3 j [ J  1 - -  L ]  3 ~ 0 ~ 5 .  

Thus in view of (27) and (19) 

IOsl<__ o ? =  - O °, 

T ( t )  = 1 + (1 - b2)t -' + (1 - b2)t 2 + [la~l ~. + 1 - b2]t ~ + [(4 - b-~)l~l ~ + l - b~-]t -4 

+ . . . + { . . , + [ ( k _ 2 ) 2 _ ( k _ 3 ) 2 b 2 ] i a 3 1 2 + l _ b 2 } t  k + . . .  . 
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where again (considering (26) and (27)) the equality holds only for /,. and its 

rotations. 

Let us assume now that 

ID=k-3l _-< -O~k 3, 

la2k 31--<a~k 3, k =2 ,3  . . . . .  n, 

and estimate the right-hand side of (24) upwards by using the triangle inequality. 

Because all the coefficients of a2k-3 .. . . .  a3 were positive, the upper bound can be 

obtained by replacing a ,  by a°,. From this and from the fact that L~ was the 

equality function in (20) and therefore in (24) there follows 

(28) I o 2 ~ _ , l =  < - O°k_ , ,  k = 1,2 . . . . .  

Because, except for k = 2, equality in (28) can be reached only if la~[ = c~ the 

only extremal function of this estimation for k ~ 2 is L~(z). 
Thus we have proved 

THEOREM 2. For every function 

z = I ( w ) = w + D ' + ~ + " ' ,  
W W 

inverse to odd ~b-functions, the estimations 

ID, l<=l-b  2 

(29) 
ID2.+,I <- - ~ [3,kb 2k 

hold. Here 

2 2n -_k (2n - k - 1)! 
f l , k = ( - 1 ) k k ! Z ( n - k + l )  [ (n_k)! ]z  , n = l , 2  . . . . .  k = l , 2  . . . . .  /-/. 

The only extremal functions in (29) for all the indexes except n = 1 is the 

function satisfying the equation 

Io(w) + Io(w)-' = b2w-' + w 

and its rotations. For n = 1 the problem of the uniqueness of the extremal Io 

remains open. 

The above result generalizes that obtained by Netanyahu [4] and Schober ([5], 

corollary, p. 116). 
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